0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Параметром срабатывания реле считается

Основные параметры и характеристики электромагнитных реле

Электрический аппарат, реализующий релейный закон управления, называется реле . В реле при плавном изменении управляющего (входного) параметра до определенного заданного значения управляемый (выходной) параметр изменяется скачкообразно. При этом хотя бы один из этих параметров должен быть электрическим.

Действие функциональных органов электромагнитного реле можно проследить по схеме рис. 1. Воспринимающий орган А преобразует входную величину (напряжение) Uвх, поступающую на обмотку 2 магнитопровода 1, в промежуточную величину, т.е. в механическую силу якоря 3. Механическая сила якоря Fя действует на контактную систему исполнительного органа В. Промежуточная величина – сила якоря Fя, – пропорциональная входной величине Uвх, сравнивается с заданным значением силы Fпр развиваемой пружиной 9 промежуточного органа Б. При Uвх

В процессе функционирования электромагнитные реле во временном масштабе различают четыре фазы: период (время) срабатывания tср, рабочий период tраб, период (время) отключения tоткл, период (время) покоя tп (рис.2).

Рис. 2. Зависимость выходной (а) и выходной (б) величин от времени

Период срабатывания электромагнитного реле

Период срабатывания включает промежуток времени от момента начала воздействия входного сигнала на воспринимающий орган до момента появления сигнала в управляемой цепи. Этому периоду на рис.2, б соответствует отрезок оси абсцисс tср = t2 –t0. В момент t0 ток в обмотке реле возрастает до значения, при котором электромагнитной силе Fэ, действующей на якорь, начинает противодействовать сила пружины Fм (механическая сила) промежуточного органа. Входная величина при этом называется величиной трогания при срабатывании.

Периоду трогания соответствует отрезок tтр = t1–t0. В момент времени t1 якорь электромагнита реле начинает движение. В течение tдв = t2–t1 якорь перемещается, преодолевая противодействие промежуточного органа Б (см. рис. 1) и приводя в действие исполнительный орган В.

В конце хода якоря замыкаются контакты исполнительного органа, ток нагрузки iн (рис.2, а) начинает возрастать от нуля до установившегося значения. Входная величина, при которой начинается управление выходной цепью, называется величиной срабатывания (Iср). Мощность Рср, соответствующая Iср, называется мощностью срабатывания.

Время срабатывания t ср = tтр + tдв.

Время срабатывания электромагнитных реле колеблется от 1-2 до 20 мс. Электромагнитные реле времени обеспечивают выдержку до 10 с.

Для оценки времени срабатывания реле допустимо использовать выражение

где t1 – время срабатывания при заданном коэффициенте запаса kз и коэффициенте m = 1; a, b – коэффициенты, которые определяются в зависимости от типа реле и значений kз и m.

Для быстродействующих реле при kз = 1,5¸2 значение коэффициента а приближается к единице. Для обыкновенных реле при k з = 1,5¸3 значение а = 0,25¸0,95, значение коэффициента b находится обычно в пределах 1,4-1,6.

Рабочий период электромагнитного реле

Рабочий период включает промежуток времени tраб = t3 – t2, т.е. время от момента управления выходной цепью t2 до момента прекращения воздействия на воспринимающий орган входного сигнала t3. Ток начинает расти до установившегося значения Iраб (рис.2, б) – это рабочее значение входной величины, которое обеспечивает надежное срабатывание реле.

Отношение Iраб / Icр = kз называется коэффициентом запаса по срабатыванию.

Для характеристики перегрузочной способности чувствительного элемента реле применяется значение входной величины, называемое предельным значением рабочей величины Iраб.max.

Предельное значение рабочей величины – это такое ее значение, которое чувствительный орган выдерживает в течение короткого нормируемого промежутка времени. Однако значение данной величины недопустимо при работе реле в нормальном режиме по условию электрической или механической прочности или нагрева.

Для характеристики нагрузочной способности исполнительного органа реле используется понятие мощности управления Ру. Мощностью управления называется мощность в управляемой цепи, которую исполнительный орган может длительно пропускать.

Период отключения электромагнитного реле

Период отключения содержит промежуток времени tоткл = t6 – t3, т.е. время от момента прекращения воздействия на воспринимающий орган t3 до момента уменьшения тока iн в управляемой цепи до нуля (рис.16, а).

В период отключения входит период отпускания tотп = t4 – t3, в который реле отключается. Ток iy в обмотке реле спадает до нуля (рис.2, б). В этот период противодействующее усилие пружины (механическое усилие) превышает электромагнитное усилие, т.е. Fм > Fэ, и происходит отпускание якоря.

После выбора провала контактов (промежуток tк = t5 – t4) контакты реле размыкаются и между ними загорается дуга, которая гаснет через время tд = t6 – t5. За период tд ток в управляемой цепи уменьшается от Iн до нуля (рис.2, а).

Время отключения реле t откл = tотп + tк + tд.

Период отключения характеризуется коэффициентом возврата, представляющим отношение тока отпускания Iотп к току срабатывания Iср: kв = Iотп / Icр.

Обычно для реле защиты энергосистем и реле управления, контролирующих входной параметр в узких пределах, kв должен быть ближе к единице.

Период покоя электромагнитного реле

Период покоя – это промежуток времени tп = t7 – t6.

Читать еще:  Когда нужно менять антифриз в автомобиле

Для периода покоя характерен параметр, называемый величиной несрабатывания, которая представляет наибольшее значение входной величины, обеспечивающее отсутствие как срабатывания реле, так и удержания в рабочем состоянии. Время несрабатывания меньше времени трогания при срабатывании и времени отпускания.

Отношение мощности управления к мощности срабатывания называется коэффициентом усиления, kу = Py / Pcр.

Число включений в единицу времени определяется величиной, обратно пропорциональной времени цикла:

f = 1/t ц = 1/( t сраб + t раб + t откл + t п)

Общая характеристика реле

Классификация реле. Под реле понимают такой электри­ческий аппарат, в котором при плавном изменении управ­ляющего (входного) параметра до определенной заранее заданной величины происходит скачкообразное изменение управляемого (выходного) параметра. Хотя бы один из этих параметров должен быть электрическим.

По области применения реле можно разделить на реле для схем автоматики, для управления и защиты электро­привода и защиты энергосистем. По принципу действия ре­ле делятся на электромагнитные, поляризованные, тепло­вые, индукционные, магнитоэлектрические, полупроводни­ковые и др.

В зависимости от входного параметра реле можно раз­делить на реле тока, напряжения, мощности, частоты и дру­гих величин. Отметим, что реле может реагировать не толь­ко на входной параметр, но и на разность значений (диф­ференциальное реле), изменение знака или скорости изме­нения входного параметра. Иногда реле, имеющее только один входной параметр, должно воздействовать на не­сколько независимых цепей. В этом случае реле воздей­ствует на другое, так называемое промежуточное реле, которое имеет необходимое число управляемых цепей.

Промежуточное реле используется и тогда, когда мощ­ность основного реле недостаточна для воздействия на управляемые цепи.

По принципу воздействия на управляемую цепь реле делятся на контактные и бесконтактные. Выходным параметром бесконтактных реле является резкое изменение сопротивления, включенного в управляемую цепь. Разомк­нутому состоянию контактов контактного реле соответст­вует большое сопротивление управляемой цепи бескон­тактного реле. Это состояние бесконтактного реле называ­ется закрытым. Замкнутому состоянию контактов контактного реле соответствует малое сопротивление в уп­равляемой цепи бесконтактного реле. Такое состояние бес­контактного реле называется открытым.

По способу включения реле разделяются на первичные и вторичные. Первичные реле включаются в управляемую цепь непосредственно, вторичные – через измерительные трансформаторы.

Основные характеристики реле. Рассмотрим характе­ристику управления реле, представляющую собой зависи­мость выходного параметра от входного параметра для реле с замы­кающим контактом. У этих реле при отсутствии входного сигнала контакты разомкнуты, и ток в управляемой цепи равен нулю. Для бесконтактных реле сопротивление, введенное в управляемую цепь, достаточно велико, и ток имеет минимальное значение. На рис. 6.1 по оси абсцисс отложено значение входного параметра , а по оси ординат – ­выходного параметра .

Значение входного параметра (напряжения, тока и т.д.), при котором происходит срабатывание реле, называется параметром (напряжением, током и т.д.) срабатывания. До тех пор, пока 6 циклов. Надежность работы схем автоматики зависит от надежно­сти работы отдельных элементов, в том числе и реле.

Из-за большого количества реле в современных схемах и большого количества выполняемых ими операций к ним предъявляются требования высокой надежности.

Реле. Общие свойства, классификация реле

Реле называют элемент, в котором при достижении определенного значения входной величины Х, выходная величина Y изменяется скачком.

Cкачкообразное изменение выходной величины от значения У до Уmax происходит при значении входной величины Х = Хср, которая называется «срабатыванием реле» (рис. 6.12).

Скачкообразное изменение выходной величины от значения Уmax до значения У , происходит при значении входной величины Х=Хотп, которая называется «отпусканием реле».

Время перехода от У до Уmax и от Уmax до У соответственно называется временем срабатывания и временем отпускания реле.

Отношение величины отпускания к величине срабатывания реле называется коэффициентом возврата реле kв:

.

Надежность срабатывания реле характеризуется коэффициентом запаса реле на срабатывание kз, который определяется отношением

где Храб – установившееся (рабочее) значение входной величины.

Реле состоит из двух основных частей: чувствительного органа, воспринимающего изменение управляющего параметра Х и управляющего органа, который вызывает изменение выходной величины У.

Основные функции реле: выявление предельных значений контролируемой величины, усиление сигнала, распределение сигнала по многим каналам, переключение каналов, включение и отключение объектов, регулирование времени действия сигналов и т.д.

Реле являются наиболее распространенными элементами автоматики. Реле классифицируются по следующим признакам:

· по свойствам входного сигнала – на электрические, тепловые, механические, гидравлические, пневматические, оптические, акустические;

· по времени срабатывания – на безынерционные (tср ≤ 0,001 с), нормальные (tср = 0,001-0,15 с), замедленного действия (tср = 0,15-1 с) реле времени (tср > 1 с);

· по устройству исполнительных органов – на контактные, бесконтактные;

· по назначению – реле управления, защиты и сигнализации;

· по характеру реакции на контролируемую величину – реле максимального действия, минимального действия и др.

Читать еще:  Производство приоры в чечне

· по роду тока – реле постоянного и переменного тока.

Наиболее распространенными являются электрические реле, которые разделяются на электромагнитные, магнитоэлектрические, электродинамические, электронные, полупроводниковые, ионные.

Основными параметрами электрических реле являются:

1. Мощность срабатывания Рср – электрическая мощность, которая должна быть подведена к реле от управляющей цепи для его надежного срабатывания, т.е. приведение в действие управляемой цепи.

2. Мощность управления Руп – максимальная величина электрической мощности в управляемой цепи, при которой реле еще работает надежно.

3. Допустимая разрывная мощность Рр – мощность, которая может быть разорвана контактами при определенном токе (напряжение) без образования устойчивой электрической дуги при данном напряжении.

Мощность срабатывания определяется общими электрическими и конструктивными параметрами реле; мощность управления – параметрами контактов реле, переключающих управляемую цепь.

На основании Рср и Руп – выбирается требуемый тип реле.

4. Коэффициент управления – величина отношения управляемой мощ- ности к мощности срабатывания реле

.

Электромагнитные реле. В устройствах автоматики электромагнитные реле получили наибольшее распространение, что объясняется высокой надежностью, долговечностью, большими разнообразными и техническими возможностями электромагнитных реле.

Принцип действия электромагнитных реле основан на притяжении стального якоря к сердечнику электромагнита, когда по обмотке последнего протекает электрический ток.

При отсутствии тока якорь с помощью возвратной пружины оттягивается от сердечника электромагнита.

Электромагнитные реле по характеру движения подвижной части подразделяются на 2 группы: поворотные и втяжные (рис. 6.13).

Реле постоянного тока подразделяются на нейтральные и поляризованные.

Нейтральное реле одинаково реагирует на постоянный ток обоих направлений, протекающий по его обмотке.

Поляризованное реле работает различным образом, в зависимости от направления тока.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9249 — | 7349 — или читать все.

Электромагнитное реле

Устройство, обозначение и параметры реле

Для управления различными исполнительными устройствами, коммутации цепей, управления приборами в электронике активно применяется электромагнитное реле.

Устройство реле достаточно просто. Его основой является катушка, состоящая из большого количества витков изолированного провода.

Внутрь катушки устанавливается стержень из мягкого железа. В результате получается электромагнит. Также в конструкции реле присутствует якорь.Он закреплён на пружинящем контакте. Сам же пружинящий контакт закреплён на ярме. Вместе со стержнем и якорем ярмо образует магнитопровод.

Если катушку подключить к источнику тока, то образовавшееся магнитное поле намагничивает сердечник. Он в свою очередь притягивает якорь. Якорь укреплён на пружинящем контакте. Далее пружинящий контакт замыкается с другим неподвижным контактом. В зависимости от конструкции реле, якорь может по-разному механически управлять контактами.

Устройство реле.

В большинстве случаев реле монтируется в защитном корпусе. Он может быть как металлическим, так и пластмассовым. Рассмотрим устройство реле более наглядно, на примере импортного электромагнитного реле Bestar. Взглянем на то, что внутри этого реле.

Вот реле без защитного корпуса. Как видим, реле имеет катушку, стержень, пружинящий контакт, на котором закреплен якорь, а также исполнительные контакты.

На принципиальных схемах электромагнитное реле обозначается следующим образом.

Условное обозначение реле на схеме состоит как бы из двух частей. Одна часть (К1) – это условное обозначение электромагнитной катушки. Она обозначается в виде прямоугольника с двумя выводами. Вторая часть (К1.1; К1.2) – это группы контактов, которыми управляет реле. В зависимости от своей сложности реле может иметь достаточно большое количество коммутируемых контактов. Они разбиваются на группы. Как видим, на обозначении изображены две группы контактов (К1.1 и К1.2).

Как работает реле?

Принцип работы реле наглядно иллюстрирует следующая схема. Есть управляющая цепь. Это само электромагнитное реле K1, выключатель SA1 и батарея питания G1. Также есть исполнительная цепь, которым управляет реле. Исполнительная цепь состоит из нагрузки HL1 (лампа сигнальная), контактов реле K1.1 и батареи питания G2. Нагрузкой может быть, например, электрическая лампа или электродвигатель. В данном случае в качестве нагрузки используется сигнальная лампа HL1.

Как только мы замкнём управляющую цепь выключателем SA1, ток от батареи питания G1 поступит на реле K1. Реле сработает, и его контакты K1.1 замкнут исполнительную цепь. На нагрузку поступит напряжение питания от батареи G2 и лампа HL1 засветится. Если разомкнуть цепь выключателем SA1, то с реле K1 будет снято напряжение питания и контакты реле K1.1 вновь разомкнуться и лампа HL1 выключится.

Коммутируемые контакты реле могут иметь своё конструктивное исполнение. Так, например, различают нормально-разомкнутые контакты, нормально-замкнутые контакты и контакты на переключение (перекидные). Разберёмся с этим поподробнее.

Нормально разомкнутые контакты

Нормально разомкнутые контакты – это контакты реле, которые находятся в разомкнутом состоянии до тех пор, пока через катушку реле не потечёт ток. Говоря проще, когда реле выключено, контакты тоже разомкнуты. На схемах реле с нормально-разомкнутыми контактами обозначается вот так.

Читать еще:  Формула расчета лошадиных сил

Нормально замкнутые контакты

Нормально замкнутые контакты – это контакты реле, находящиеся в замкнутом состоянии, пока через катушку реле не начнёт течь ток. Таким образом, получается, что при выключенном реле контакты замкнуты. Такие контакты на схемах изображают следующим образом.

Переключающиеся контакты

Переключающиеся контакты – это комбинация из нормально-замкнутых и нормально-разомкнутых контактов. У переключающихся контактов есть общий провод, который переключается с одного контакта на другой.

Современные широко распространённые реле, как правило, имеют переключающиеся контакты, но могут встречаться и реле, которые имеют в своём составе только нормально-разомкнутые контакты.

У импортных реле нормально-разомкнутые контакты реле обозначаются сокращением N.O. А нормально-замкнутые контакты N.C. Общий контакт реле имеет сокращение COM. (от слова common – «общий»).

Теперь обратимся к параметрам электромагнитных реле.

Параметры электромагнитных реле.

Как правило, размеры самих реле позволяют наносить на корпус их основные параметры. В качестве примера, рассмотрим импортное реле Bestar BS-115C. На его корпусе нанесены следующие надписи.

COIL 12VDC – это номинальное напряжение срабатывания реле (12V). Поскольку это реле постоянного тока, то указано сокращённое обозначение постоянного напряжения (сокращение DC обозначает постоянный ток/напряжение). Английское слово COIL переводится как «катушка», «соленоид». Оно указывает на то, что сокращение 12VDC имеет отношение к катушке реле.

Далее на реле указаны электрические параметры его контактов. Понятно, что мощность контактов реле может быть разная. Это зависит как от габаритных размеров контактов, так и от используемых материалов. При подключении нагрузки к контактам реле нужно знать мощность, на которую они рассчитаны. Если нагрузка потребляет мощность больше той, на которую рассчитаны контакты реле, то они будут нагреваться, искрить, «залипать». Естественно, это приведёт к скорому выходу из строя контактов реле.

Для реле, как правило, указываются параметры переменного и постоянного тока, которые способны выдержать контакты.

Так, например, контакты реле Bestar BS-115C способны коммутировать переменный ток в 12А и напряжение 120V. Эти параметры зашифрованы в надписи 12А 120VAC (сокращение AC обозначает переменный ток).

Также реле способно коммутировать постоянный ток силой 10А и напряжением 28V. Об этом свидетельствует надпись 10A 28VDC. Это были силовые характеристики реле, точнее его контактов.

Потребляемая мощность реле.

Теперь обратимся к мощности, которую потребляет реле. Как известно, мощность постоянного тока равна произведению напряжения (U) на ток (I): P=U*I. Возьмём значения номинального напряжения срабатывания (12V) и потребляемого тока (30 mA) реле Bestar BS-115C и получим его потребляемую мощность (англ. — Power consumption).

Таким образом, мощность реле Bestar BS-115C составляет 360 милливатт (mW).

Есть ещё один параметр – это чувствительность реле. По своей сути, это и есть мощность потребления реле во включённом состоянии. Понятно, что реле, которому требуется меньше мощности для срабатывания, является более чувствительным по сравнению с теми, которые потребляют большую мощность. Такой параметр, как чувствительность реле, особенно важен для устройств с автономным питанием, так как включенное реле расходует заряд батарей. К примеру, есть два реле с потребляемой мощностью 200 mW и 360 mW. Таким образом, реле мощностью 200 mW обладает большей чувствительностью, чем реле мощностью 360 mW.

Как проверить реле?

Электромагнитное реле можно проверить обычным мультиметром в режиме омметра. Так как обмотка катушки реле обладает активным сопротивлением, то его можно легко измерить. Сопротивление обмотки реле может варьироваться от нескольких десятков ом (Ω), до нескольких килоом (). Обычно самое низкое сопротивление обмотки имеют миниатюрные реле, которые рассчитаны на номинальное напряжение 3 вольта. У реле, номинальное напряжение которых составляет 48 вольт, сопротивление обмотки намного выше. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BS-115C.

Номинальное напряжение (V, постоянное)Сопротивление обмотки (Ω ±10%)Номинальный ток (mA)Потребляемая мощность (mW)
325120360
57072
610060
922540
1240030
24160015
4864007,5

Отметим, что потребляемая мощность всех типов реле этой серии одинакова и составляет 360 mW.

Электромагнитное реле является электромеханическим прибором. Это, наверное, является самым большим плюсом и в то же время весомым минусом.

При интенсивной эксплуатации любые механические части изнашиваются и приходят в негодность. Кроме этого, контакты мощных реле должны выдерживать огромные токи. Поэтому их покрывают сплавами драгоценных металлов, таких как платина (Pt), серебро (Ag) и золото (Au). Из-за этого качественные реле стоят довольно дорого. Если ваше реле всё-таки вышло из строя, то замену ему можно купить здесь.

К положительным качествам электромагнитных реле можно отнести устойчивость к ложным срабатываниям и электростатическим разрядам.

Ссылка на основную публикацию
Adblock
detector
×
×