0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Силы действующие на авто

Силы, действующие на автомобиль при его движении

Внешние силы, действующие на автомобиль в процессе движения, подразделяют на две группы:

сила движения (тяговая сила на ведущих колесах);

силы сопротивления (силы сопротивления качению ведомых и ведущих колес, силы сопротивления подъему автомобиля, силы сопротивления воздуха и силы сопротивления разгону (сила инерции)).

Радиус колеса. Движителем автомобиля является колесо с пневматической (эластичной) шиной, у которого различают следующие радиусы:

статический радиус rс – расстояние от оси неподвижного колеса до опорной поверхности (дороги);

динамический радиус rд– расстояние от оси катящегося колеса до опорной поверхности;

радиус качения rк – отношение линейной скорости оси колеса к его угловой скорости. Радиус качения можно также определить так: rк = rоλ(где rо — свободный радиус колеса, λ – коэффициент деформации шин, λ = 0,94…0,96).

Тяговая сила на ведущих колесах автомобиля

Если бы крутящий момент передавался от вала двигателя к ведущим колесам без механических потерь, тяговая сила на ведущих колесах при равномерном движении была бы равна

где Mкр – крутящий момент двигателя; Uк – передаточное число коробки передач, Uо – передаточное число главной передачи; rк – радиус качения колеса.

В действительности некоторая часть передаваемого момента идет на преодоление сопротивления в механизмах трансмиссии, что учитывается путем введения в расчет механического кпд ηтр трансмиссии. В соответствии с этим тяговую силу на ведущих колесах определяют так:

Коэффициент полезного действия трансмиссии ηтр представляет собой отношение мощности Nк на ведущих колесах к мощности Nе двигателя:

где Nтр – мощность, расходуемая на преодоление сопротивления в механизмах трансмиссии.

Механический кпд трансмиссии ηтр = 0,80…0,95.

Максимальный крутящий момент, развиваемый двигателем, не всегда может быть использован, так как тяговое усилие автомобиля не должно превышать силу сцепления колес с дорогой. Максимальная тяговая сила по условию сцепления с дорогой

где G2 сила тяжести, приходящаяся на ведущие колеса автомобиля; φ – коэффициент сцепления шин ведущих колес с дорогой, зависящий от типа и состояния дорожного покрытия и шин. Для асфальтобетонного покрытия φ = 0,5…0,8.

Таким образом, качение ведущих колес без буксования будет происходить при условии PкPсц = G2φ.

Во время движения автомобиля тяговое усилие на ведущих колесах расходуется на преодоление ряда сопротивлений движению.

Силы сопротивления движению автомобиля

Сопротивление качению колес автомобиля вызывается деформацией шин, деформацией дороги под шинами и трением шин о дорогу. К сопротивлению качению обычно относят также трение в подшипниках колес и в элементах подвески. Во время качения колеса между частями шины вследствие их деформации возникает трение. Выделяющаяся теплота при этом рассеивается, что также приводит к потере энергии.

Деформация шин зависит от нагрузки на колесо, профиля шины, давления воздуха в шинах, величины приложенного к колесу крутящего момента, скорости движения, материала и типа корда, а также многих других факторов. Деформация дороги зависит от вида, качества и состояния ее покрытия. Трение шин о дорогу зависит от формы протектора, размера шины, деформации шины и дороги.

При качении эластичного колеса по твердой дороге деформации в передней части контакта шины с дорогой нарастают, а в задней части уменьшаются. Поэтому элементарные вертикальные реакции, действующие со стороны дороги на точки протектора, в передней части пятна контакта больше, чем в задней. Схема сил, действующих на колесо при его качении, показана на рисунке 2.1.

Рис. 2.1. Силы, действующие на колесо

Анализ этой схемы показывает, что точка приложения равнодействующей Zк нормальных реакций, равной по величине Gк, смещается от вертикального диаметра на некоторую величину аш. В результате такого смещения возникает пара сил Zки Gк, создающая момент Мск = Zк аш,противодействующий качению колеса. Чтобы колесо катилось равномерно, к нему необходимо приложить толкающую силу Тк, которая вместе с горизонтальной реакцией дороги Рf образует пару сил. Момент этой пары уравновесит момент Мск = Zк аш. Величину силы сопротивления качению Рf находят из условия равновесия колеса

откуда следует, что

Отношение аш / rк называется коэффициентом сопротивления качению. Для асфальтобетонного покрытия f = 0,014…0,018. Величину коэффициента f можно определить как соотношение силы Рf, способной вызвать равномерное качение колеса, к величине вертикальной нагрузки автомобиля Gа:

Для движения по горизонтальной дороге сила сопротивления качению пропорциональна полной массе автомобиля:

Сила сопротивления подъему. Автомобильная дорога обычно имеет много чередующихся подъемов и спусков. Крутизну подъема характеризуют углом αд (град) или уклоном дороги, который выражается как отношение превышения Н к заложению (базе отсчета) Вд. Базу отсчета обычно принимают равной 100 м (рис. 2.2.).

Рис. 2.2. Сила сопротивления подъему:

G – вес автомобиля; H – высота уклона;

Bд – заложение (база отсчета); αд – угол уклона

Вес автомобиля G может быть представлен в виде двух составляющих: силы G sin αд, параллельной дороге, и силы G cos αд, перпендикулярной ей.

Силу G sin αд называют силой сопротивления подъему и обозначают Рп. На автомобильных дорогах с твердым покрытием углы подъема обычно невелики (не превышают 4…5°). Для таких углов можно принять, что 1/100 уклона соответствует 35′ угла αд. При этом уклон i = tg αд ≈ sin αд. Тогда сила сопротивления при движении на подъем Рп = G sin αд = Gi.

При движении на спуске сила Рп направлена в сторону движения автомобиля и является движущей. Угол αд и уклон дороги i считают положительным при движении автомобиля на подъем и отрицательными при его движении на спуск.

Суммарная сила сопротивления дороги. При движении автомобиля на подъеме и спуске составляющая силы тяжести, перпендикулярная дороге, равна G cos αд. Сила сопротивления качению Рf при движении на этих участках дороги равна Рf = f G cos αд, т.е. она несколько меньше, чем при движении по горизонтальному участку. Однако для малых углов cos αд ≈ 1, что позволяет определить силу Рf по формуле Рf = Zк f также и для негоризонтальных участков дороги.

Коэффициент f и уклон i дороги в совокупности характеризуют качество дороги, поэтому введено понятие о силе сопротивления дороги Рд , равной сумме сил Рп и Рf :

Выражение (f + i) называют коэффициентом сопротивления дороги и обозначают буквой ψ. Тогда сила сопротивления дороги

Сила сопротивления воздуха. Автомобиль во время движения перемещает частицы окружающего воздуха, и в каждой точке поверхности автомобиля в результате соприкосновения ее с окружающей средой возникают элементарные силы, перпендикулярные к поверхности и касательные к ней. Касательные силы являются силами трения. Нормальные силы создают давление на поверхность автомобиля.

Для упрощения расчетов элементарные силы сопротивления воздуха заменяют сосредоточенной силой сопротивления воздуха Рв. Опытным путем установлено, что сила сопротивления воздуха

где Сx – коэффициент сопротивления воздуха (коэффициент обтекаемости), зависящий от формы и качества отделки поверхности автомобиля, Н∙с 2 / м 4 ; Fв – лобовая площадь автомобиля, м 2 ; υ – скорость движения автомобиля.

Читать еще:  Самодельные съемники для гаража

Лобовой называют площадь проекции автомобиля на плоскость, перпендикулярную его продольной оси. Определить точное значение лобовой площади довольно трудно, так как для этого нужно провести измерения размеров автомобиля и начертить его наружный контур. Поэтому при определении Fв пользуются приближенными формулами:

для грузового автомобиля и автобуса

где В – колея, м; На – наибольшая высота автомобиля, м;

для легкового автомобиля

где В – наибольшая ширина автомобиля, м.

Средние значения коэффициентов сопротивления воздуха и лобовой площади автомобиля приведены в таблице.

Силы действующие на автомобиль при движении

Схема сил действующих на ведущее колесо

На движущийся автомобиль действует ряд сил, часть из которых направлена по оси движения автомобиля, а часть — под углом к этой оси. Условимся называть первые из этих сил продольными, а вторые боковыми.

Рис. Схема сил действующих на ведущее колесо.
а — состояние неподвижности; б — состояние движения

Продольные силы могут быть направлены как по ходу, так и против хода движения автомобиля. Силы, направленные по ходу движения, являются движущимися и стремятся продолжить движение. Силы, направленные против хода движения, являются силами сопротивления и стремятся остановить автомобиль.

На автомобиль, движущийся по горизонтальному и прямому участку дороги, действуют следующие продольные силы:

  • тяговая сила
  • сила сопротивления воздуха
  • сила сопротивления качению

При движении автомобиля в гору возникает сила сопротивления подъему, а при разгоне автомобиля—сила сопро­тивления разгону (сила инерции).

Тяговая сила

Сила сцепления колес с дорогой

У легковых автомобилей полный вес рас­пределяется по осям примерно поровну. Поэтому сцепной вес его можно принять равным 50% полного веса. У грузовых автомоби­лей при полной их на­грузке сцепной вес (вес, приходящийся на заднюю ось) составляет примерно 60—70% полного веса.

Величина коэффициента сцепления имеет большое значение для эксплуатации автомобиля и безопасности движения, так как от него зависят проходимость автомобиля, тормозные качества, возможность, пробуксовки и заноса ведущих колес. При незначи­тельном коэффициенте сцепления трогание автомобиля с места со­провождается пробуксовкой, а торможение — скольжением колес. В результате автомобиль иногда не удается тронуть с места, а при торможении происходит резкое увеличение тормозного пути и возникновение заноса.

На асфальтобетонных покрытиях в жаркую погоду на поверх­ность выступает битум, делая дорогу маслянистой и более скольз­кой, что снижает коэффициент сцепления. Особенно сильно снижается коэффициент сцепления при смачивании дороги первым дождем, когда образуется еще не смытая пленка жидкой грязи. Заснежённая или обледенелая дорога особенно опасна в теплую погоду, когда поверхность подтаивает.

При увеличении скорости движения коэффициент сцепления снижается, в особенности на мокрой дороге, так как выступы ри­сунка протектора шины не успевают продавливать пленку влаги.

Исправное состояние рисунка протектора шины имеет большое значение при движении по грунтовым дорогам, снегу, песку, а также по дорогам с твердым покрытием, по покрытым пленкой грязи или воды. Благодаря наличию выступов рисунка опорная площадь шины уменьшается и, следовательно, возрастает удельное давление на поверхность дороги. При этом легче продавливается грязевая пленка и восстанавливается контакт с дорожным покрытием, а на легком грунте происходит непосредственное зацепление выступов рисунка за грунт.

Повышенное давление воздуха в шине уменьшает ее опорную поверхность, вследствие чего удельное давление возрастает на­столько, что при трогании с места и при торможении может произойти разрушение резины и сцепление колес с дорогой уменьшается.

Таким образом, величина коэффициента сцепления зависит от многих условий и может изменяться в довольно значительных пределах. Так как много дорожно-транспортных происшествий происходит из-за плохого сцепления, то водители должны уметь приблизительно оценивать величину коэффициента сцепления и выбирать скорость движения и приемы управления в соответствии с ним.

Сила сопротивления воздуха

  • лобового сопротивле­ния (около 55—60% всего сопротивления воздуха)
  • создаваемого выступающими частями—подножками автобуса или автомобиля, крыльями (12—18%)
  • возникающего при прохождении воздуха через радиатор и подкапотное пространство (10—15%) и др.

Передней частью автомобиля воздух сжимается и раздвигает­ся, в то время как в задней части автомобиля создается разреже­ние, которое вызывает образование завихрений.

Сила сопротивления воздуха зависит от величины лобовой, поверхности автомобиля, его формы, а также от скорости движе­ния. Лобовую площадь грузового автомобиля определяют как произведение колеи (расстояние между шинами) на высоту авто­мобиля. Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возра­стает в 2 раза, то сопротивление воздуха увеличивается в 4 раза).

Для улучшения обтекаемости и уменьшения сопротивления воздуха ветровое стекло автомобиля располагают наклонно, а вы­ступающие детали (фары, крылья, ручки дверей) устанавливают заподлицо с внешними очертаниями кузова. У грузовых автомоби­лей можно уменьшить силу сопротивления воздуха, закрыв грузо­вую платформу брезентом, натянутым между крышей кабины и задним бортом.

Сила сопротивления качению

Сила сопротивления качению равна произведению полного веса автомобиля на коэффициент сопротивления качению шин, который зависит от давления воздуха в шинах и качества дорожного покрытия. Вот- некоторые значения коэффициента сопротивления качению шин:

  • для асфальтобетонного покрытия— 0,014—0,020
  • для гравийного покрытия—0,02—0,025
  • для песка—0,1—0,3

Сила сопротивления подъему

При движении на подъем автомобиль испытывает дополнитель­ное сопротивление, которое зависит от угла наклона дороги к гори­зонту. Сопротивление подъему тем больше, чем больше вес автомобиля и угол наклона дороги. При подъезде к подъему необходимо правильно оценить возможности преодоления подъема. Если подъем непродолжительный, его преодолевают с разгоном автомобиля перед подъемом. Если подъем продолжительный, его преодолевают на пониженной передаче, переключившись на нее у начала подъема.

При движении автомобиля на спуске сила сопротивления подъему направлена в сторону движения и является движущей силой.

Силы, действующие на автомобиль

Для правильного и безопасного управления любым автомобилем необходимо знать физические законы его поведения на дороге. Эти знания помогают при правильной оценке конкретной дорожной ситуации выбрать оптимальное решение и, воздействуя на органы управления автомобиля, совершать безопасные маневрирования.

Рисунок 1. — Силы, действующие на автомобиль

Различные силы, воздействующие на автомобиль, заставляют его двигаться и останавливаться. Силы, действующие на автомобиль, делятся на две группы. Первая группа оказывает сопротивление движению вторая — заставляет его двигаться.

  • 1. Сила тяжести — возникает под воздействием силы притяжения Земли и направлена вертикально вниз, распределяясь по всем осям и колесам автомобиля. Фактический вес транспортного средства оказывает давление на дорожное покрытие, и чем он больше, тем больше становится величина силы сцепления колес с дорогой. Эта сила оказывает существенное влияние в начале движения и в дальнейшем его процессе на ведущие колеса автомобиля.
  • 2. Силы реакции дорожного полотна — возникает из-за сил, действующих со стороны транспортного средства в местах соприкосновения колес с дорогой. Чем больше сила тяжести, действующая со стороны колеса автомобиля на дорожное полотно, тем больше сила ответной реакции со стороны дороги.
  • 3. Сила тяги всегда направлена в сторону движения автомобиля. Она возникает при передаче крутящего момента от двигателя к ведущим колесам, где они в свою очередь стараются переместить слои дорожного полотна назад. Чем больше крутящий момент двигателя и выше передаточное число коробки передач и главной передачи, чем меньше радиус колеса с учетом деформации шины, тем больше становится тяговая сила. Если величина тяговой силы превышает силы сцепления колес с дорогой, возникает пробуксовка ведущих колес. Поэтому начинать движение на скользкой дороге или по бездорожью, а также с перевозимым грузом необходимо с включением низшей передачи, когда сила тяги достигает наибольшей величины.
  • 4. Центробежная сила возникает в момент прохождения поворотов или смещения транспортного средства влево или вправо относительно проезжей части. В эти моменты автомобиль стремится сохранить первоначально заданное направление движения. Величина этой силы прямо пропорциональна массе транспортного средства и квадрату скорости и обратно пропорциональна радиусу вхождения в поворот. Направление ее действия — от центра тяжести в противоположную сторону поворота. Так, при вхождении в правый поворот центробежная сила старается отклонить автомобиль влево на встречную полосу, а при прохождении левого поворота — вправо в сторону обочины. Уменьшить ее значение можно только снижением скорости движения и увеличением радиуса траектории входа в поворот. При неправильно выбранной скорости и радиусе поворота центробежная сила может развернуть автомобиль вокруг его оси, что приведет к заносу, отбросить в сторону и, наконец, опрокинуть.
  • 5. Сила сцепления шины с дорожным полотном возникает в процессе движения и зависит от многих факторов:
    • а) От качества покрытия дорожного полотна
    • б) От состояния дорожного полотна (сухое, влажное, заснеженное, обледенелое) Так при сухом покрытии сила сцепления намного больше, чем при обледенелом.
    • в) От технического состояния колес (конструкции шины, давления, рисунка протектора и его износа). При изношенном рисунке протектора и увеличенном давлении в колесе сила сцепления с дорогой уменьшается.
    • г) От массы автомобиля — с увеличением массы транспортного средства сила сцепления с дорогой увеличивается.
    • д) От скорости движения — с ее увеличением уменьшается сила сцепления с дорожным полотном.

    Водителю необходимо учитывать все эти факторы, так как когда сила тяги на колеса автомобиля превышает силу сцепления с дорожным полотном, может произойти пробуксовка колес, а на скользкой дороге возможны заносы и выход из-под контроля управления автомобиля.

    6. Сила сопротивления воздуха направлена в сторону, противоположную движению транспортного средства. Она возникает в процессе движения за счет давления на воздух поверхностями автомобиля, поэтому многое зависит от аэродинамической конструкции формы кузова автомобиля. Эта сила возрастает с увеличением скорости движения.

    Сила сопротивления качению возникает в процессе движения при трении шин автомобиля о поверхность дороги, вследствие чего возникают трения в передаточном механизме (в подшипниках колес). Эта сила прямо пропорциональна массе транспортного средства и коэффициенту сопротивления качению. Коэффициент сопротивления качению зависит от состояния дороги и определяется опытным путем. Сила сопротивления качению направлена в сторону, противоположную движению.

    Рисунок 2. — Силы, действующие на автомобиль при подъеме

    Автомобильные дороги состоят из чередующихся между собой подъемов и спусков и крайне редко имеют горизонтальные участки большой длины. Крутизну подъема характеризуют величиной угла а (в градусах) или величиной уклона дороги t, представляющей собой отношение превышения Н к заложению В (см. рис. 2):

    Вес автомобиля G, движущегося на подъеме, можно разложить на две-составляющие силы: G·sinб, направленную параллельно дороге, и G·cosб, перпендикулярную к дороге. Силу G sinб называют силой сопротивления подъему и обозначают Рб.

    На автомобильных дорогах с твердым покрытием углы подъема невелики и не превышают 4 — 5°. Для таких малых углов можно считать

    sinб, тогда Ра — G sinб = Gi.

    При движении на спуске сила Ра имеет противоположное направление и действует как движущая сила. Угол а и уклон i считают положительными на подъеме и отрицательными при движении на спуске.

    У современных автомобильных дорог нет четко выраженных участков с постоянным уклоном; их продольный профиль имеет плавные очертания. На таких дорогах уклон и сила Р непрерывно меняются в процессе движения автомобиля.

    Сопротивление неровностей. Ни одно дорожное покрытие не является абсолютно ровным. Даже новые цементобетонные и асфальтобетонные покрытия имеют неровности высотой до 1 см. Под действием динамических нагрузок неровности быстро увеличиваются, уменьшая скорость автомобиля, сокращая срок его службы и увеличивая расход топлива. Неровности создают дополнительное сопротивление движению.

    При попадании колеса в длинную впадину оно ударяется о ее дно и подбрасывается вверх. После сильного удара колесо может отделиться от покрытия и снова удариться (уже с меньшей высоты), совершая затухающие колебания. Переезд через короткие впадины и выступы сопряжен с дополнительной деформацией шины под действием силы, возникающей при ударе о выступ неровности. Таким образом, движение автомобиля по неровностям дороги сопровождается непрерывными ударами колес и колебаниями осей и кузова. В результате происходит дополнительное рассеивание энергии в шине и деталях подвески, достигающее иногда значительных величин. [5]

    Дополнительное сопротивление, вызываемое неровностями дороги, учитывают, условно увеличивая коэффициент сопротивления качению.

    Величины коэффициента сопротивления качению f и уклона i в совокупности характеризуют качество дороги. Поэтому часто говорят о силе сопротивления дороги Р, равной сумме сил Рf и Ра:

    Р = Pf -f Ра = G (f cosб-f sinб)

    Выражение, стоящее в скобках, называют коэффициентом сопротивления дороги и обозначают буквой Ф. Тогда сила сопротивления дороги: Р = G (f cosб-f sinб) = G ф.

    При движении автомобиля на него оказывает сопротивление и воздушная среда. Затраты мощности на преодоление сопротивления воздуха складываются из следующих величин:

    • — лобового сопротивления, появляющегося в результате разности давлений спереди и сзади движущегося автомобиля (около 55 — 60% всего сопротивления воздуха);
    • — сопротивления, создаваемого выступающими частями: подножками, крыльями, номерным знаком (12 — 18%);
    • — сопротивления, возникающего при прохождении воздуха через радиатор и подкапотное пространство (10-15%);
    • — трения наружных поверхностей о близлежащие слои воздуха (8 — 10%);
    • — сопротивления, вызванного разностью давлений сверху и снизу автомобиля (5 — 8%).

    При увеличении скорости движения увеличивается и сопротивление воздуха.

    Прицепы вызывают увеличение силы сопротивления воздуха вследствие значительного завихрения воздушных потоков между тягачом и прицепом, а также из-за увеличения наружной поверхности трения. В среднем можно принять, что применение каждого прицепа увеличивает это сопротивление на 25% по сравнению с одиночным автомобилем.

    Сила инерции [15]

    Кроме сил сопротивления дороги и воздуха влияние на движение автомобиля оказывают силы инерции Р. Всякое изменение скорости движения сопровождается преодолением силы инерции, и ее величина тем больше, чем больше вес автомобиля:

    Время равномерного движения автомобиля обычно мало по сравнению с общим временем его работы. Так, например, при работе в городах автомобили движутся равномерно 15 — 25% времени. От 30% до 45% времени занимает ускоренное движение автомобиля и 30 — 40% — движение накатом и торможение. При трогании с места и увеличении скорости автомобиль движется с ускорением — его скорость при этом неравномерна. Чем быстрее автомобиль увеличивает скорость, тем больше ускорение автомобиля. Ускорение показывает, как за каждую секунду возрастает скорость автомобиля. Практически ускорение автомобиля достигает 1 — 2 м/с2. Это значит, что за каждую секунду скорость будет возрастать на 1 — 2 м/с.

    Сила инерции изменяется в процессе движения автомобиля в соответствии с изменением ускорения. Для преодоления силы инерции расходуется часть тяговой силы. Однако в тех случаях, когда автомобиль движется накатом после предварительного разгона или при торможении, сила инерции действует по направлению движения автомобиля, выполняя роль движущей силы. Принимая это во внимание, некоторые труднопроходимые участки пути можно преодолевать с предварительным разгоном автомобиля.

    Величина силы сопротивления разгону зависит от ускорения движения. Чем быстрее разгоняется автомобиль, тем большей становится эта сила. Ее величина меняется даже при трогании с места. Если автомобиль трогается плавно, то сила эта почти отсутствует, а при резком трогании она может даже превысить тяговую силу. Это приведет или к остановке автомобиля, или к буксованию колес (в случае недостаточной величины коэффициента сцепления).

    В процессе работы автомобиля непрерывно меняются условия движения: тип и состояние покрытия, величина и направление уклонов, сила и направление ветра. Это приводит к изменению скорости автомобиля. Даже в наиболее благоприятных условиях (движение по усовершенствованным автомагистралям вне городов и населенных пунктов) скорость автомобиля и тяговая сила редко остаются неизменными в, течение продолжительного времени. На средней .скорости движения (определяемой как отношение пройденного пути ко времени, затраченному на прохождение этого пути с учетом времени остановок в пути) сказывается помимо сил сопротивления влияние весьма большого количества факторов. К ним относятся: ширина проезжей части, интенсивность движения, освещенность дороги, метеорологические условия (туман, дождь), наличие опасных зон (железнодорожные переезды, скопление пешеходов), состояние автомобиля и т. д.

    В сложных дорожных условиях может случиться так, что сумма всех сил сопротивления превысит тяговую силу, тогда движение автомобиля будет замедленным и он может остановиться, если водитель не примет необходимых мер.

    Силы, действующие на автомобиль

    Крутящий момент двигателя, подведенный через механизмы трансмиссии к ведущим колесам автомобиля, вызывает их вращение. В месте соприкосновения колеса с дорогой от крутящего момента возникает окружная сила, а со стороны дороги — касательная реакция (см. рис. 72), равная по величине окружной силе, но направленная в противоположную сторону. Суммарная касательная реакция ведущих колес передается на задний мост и вызывает движение всего автомобиля, поэтому называется тяговой силой.

    Величина тяговой силы тем больше, чем больше крутящий момент двигателя и передаточные числа коробки передач и главной передачи. Но величина тяговой силы не может превысить силу тепления ведущих колес с дорогой.

    Если тяговая сила превысит силу сцепления, то ведущие колеса будут пробуксовывать.

    Сила сцепления равна произведению коэффициента сцепления на сцепной вес. Для тягового автомобиля сцепной вес равен чесу, приходящемуся на ведущие колеса автомобиля. При торможении сцепной вес автомобиля равен его весу, приходящемуся на затормаживаемые колеса.

    Коэффициент сцепления зависит от типа и состояния покрытия дороги, от конструкции и состояния шины (давление воздуха, рисунок протектора), от нагрузки и скорости движения автомобиля.

    Величина коэффициента сцепления снижается при мокрой и влажной поверхностях дороги, особенно с увеличением скорости движения и при изношенных шинах.

    Например, для сухой дороги с асфальтобетонным покрытием коэффициент сцепления равен 0,7—0,8, а для мокрой — 0,35 — 0,45. При обледенелой дороге коэффициент сцепления снижается до 0,1—0,2.

    Сила тяжести, или вес, автомобиля приложена в центре тяжести. У современных легковых автомобилей центр тяжести располагается на высоте 0,45—0,6 м от поверхности дороги и примерно посередине автомобиля. Поэтому полный вес легкового автомобиля распределяется по его осям примерно поровну, т. е. сцепной вес равен 50% полного веса. Высота расположения центра тяжести у грузовых автомобилей 0,65—1,0 м. У полностью груженых грузовых автомобилей сцепной вес составляет 60— 75% полного веса. У автомобилей со всеми ведущими осями сцепной вес равен полному весу автомобиля.

    При движении автомобиля указанные соотношения изменяются, так как происходит продольное перераспределение полного веса автомобиля между его осями: при передаче ведущими колесами тяговой силы больше нагружаются задние колеса, а при торможении автомобиля — передние колеса.

    Кроме того, перераспределение полного веса автомобиля между передними и задним и колесами имеет место при движении на подъем и под уклон.

    Перераспределение нагрузки, изменяя величину сцепного веса, влияет на сцепление колес с дорогой и устойчивость автомобиля.

    Силы сопротивления движению автомобиля

    Тяговая сила на ведущих колесах обеспечивает преодоление внешних сил, возникающих при движении автомобиля.

    При равномерном движении автомобиля по горизонтальной дороге такими силами являются: сила сопротивления качению и сила сопротивления воздуха.

    При движении автомобиля в гору (рис. 138) возникает сила сопротивления подъему, а при разгоне автомобиля — сила сопротивления разгону (сила инерции).

    Рис. 138. Схема сил, действующих на автомобиль при равномерном движении на подъеме

    Сила сопротивления качению возникает вследствие деформации шин и поверхности дороги. Она равна произведению полного веса автомобиля на коэффициент сопротивления качению.

    Коэффициент сопротивления качению зависит от типа и состояния покрытия дороги, конструкции шин, их износа и давления воздуха в них, скорости движения автомобиля.

    Например, для дороги с асфальтобетонным покрытием коэффициент сопротивления качению равен 0,014—0,020, для сухой грунтовой дороги — 0,025—0,035.

    На твердых дорожных покрытиях коэффициент сопротивления качению резко увеличивается при снижении давления воздуха в шинах.

    Коэффициент сопротивления качению возрастает с ростом скорости движения, а также с увеличением как крутящего, так и тормозного момента.

    Сила сопротивления воздуха зависит от коэффициента сопротивления воздуха, лобовой площади и скорости движения автомобиля.

    Коэффициент сопротивления воздуха определяется типом автомобиля и формой его кузова, а лобовая площадь — колеей колес (расстоянием между центрами шин) и высотой автомобиля.

    Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возрастает в 2 раза, сопротивление воздуха увеличивается в 4 раза).

    Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возрастает в 2 раза, сопротивление воздуха увеличивается в 4 раза).

    Сила сопротивления подъему тем больше, чем больше вес автомобиля и крутизна подъема дороги, которая оценивается углом подъема в градусах пли величиной уклона, выраженной в процентах. При движении автомобиля под уклон сила сопротивления подъему, наоборот, ускоряет движение автомобиля.

    На автомобильных дорогах с асфальтобетонным покрытием продольный уклон обычно не превышает 6%. Если коэффициент сопротивления качению принять равным 0,02, то общее сопротивление дороги составит 8% от полного веса автомобиля.

    Сила сопротивления разгону зависит от массы автомобиля, его ускорения (прироста скорости в единицу времени) и массы вращающихся частей (маховик, колеса), на ускорение которых также затрачивается тяговая сила.

    При разгоне автомобиля сила сопротивления разгону направлена в сторону, обратную движению. При торможении автомобиля и замедлении его движения сила инерции направлена в сторону движения автомобиля.

Ссылка на основную публикацию
Adblock
detector